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Aerodynamic sound generation by turbulent flow 
in the vicinity of a scattering half plane 
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The presence of the edge of a half plane in a turbulent fluid results in a large 
increase in the noise generated by that fluid at low Mach numbers. The parameter 
which is important is the product 2k?,, where Fo is the distance of the centre of 
an cddy from the edge. Eddies which satisfy the inequality 2k?, < 1 have the 
sound output of the quadrupoles associated with the fluid motion in a plane 
normal to the edge increased by the factor ( I c T J - ~ .  There is no enhancement of 
the sound from the longitudinal quadrupoles with axes parallel to the edge: 
the rr, Or and 88 quadrupoles are the dominant sound sources. The far field sound 
intensity induced by these sources depends upon the fifth power of a typical 
fluid velocity. The intensity has a directional dependence on cos2 &8 if the half 
plane is rigid and sin2 40 if it is a pressure release surface, 0 = 0 being a direction 
in the half plane. 

If the eddies are far from the edge so that (k?,) !Z 3 1 then the farfield sound has 
the same features as would be predicted by geometrical acoustics. The edge does 
not produce any significant sound amplification. 

1. Introduction 
Lighthill (1952, 1954), in his theory of aerodynamic sound, modelled the 

problem of sound generation by turbulence in an exact analogy with sound 
radiated by a volume distribution of acoustic quadrupoles embedded in an ideal 
acoustic medium. The strength density of the equivalent quadrupoles is Light- 
hill’s stress tensor which is essentially the unsteady component of the Reynolds 
stress in low Mach number flows. Curle (1965) showed how the presence of 
boundary surfaces could be accounted for by additional surface distributions 
of dipole and monopole sources. A dimensional analysis based on the idea that 
the only velocity and length scales in the problem are set by those in the turbu- 
lence yields the well-known laws that the intensity of sound generated by free 
turbulence increases with the eighth power of flow velocity, while that induced 
by unsteady surface forces increases in proportion to the sixth power of flow 
velocity. At sufficiently low speeds, the sound induced by any surface in the 
flow is therefore dominant, and the problem is one of considerable practical im- 
portance in both aeronautical and marine applications. On the general grounds 
that the Reynolds number in most practical flows is very large the direct effects 
of viscosity are considered to be of minor importance, so that the aerodynamic 
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noise problem is posed as the question of estimating the radiation field of known 
quadrupole sources near any surfaces that may be present according to inviscid 
propagation equations. 

An important class of problems that have so far not been included in the 
general theory is characterized by local regions where the relevant length and 
velocity scales are not set by those in the turbulence. Such a case is found when- 
ever the body has sharp edges, the edges acting as scattering centres in the vicinity 
of which the field is governed by diffraction effects according to linearized 
propagation equations. When this is so, the premise of Curle’s dimensional analy- 
sis is violated and the issue stands as an open question. The treatment of this 
general class requires rather a different technique from that used previously 
and must take into account the details of the potential field in the vicinity of 
the scattering zone. A problem in this class is considered in this paper and indi- 
cates an interesting result that the field associated with edge scattering is more 
powerful than both the direct Lighthill field and the surface dipole field of the 
usual Curle type. This conclusion essentially rests on the potential field singu- 
larity of the diffraction problem at the edge and would be substantially modified 
if any type of ‘Kutta’ condition were invoked to limit its effect. At low enough 
frequencies it may well be that the edge flow is determined by viscous effects- 
which are not considered in this paper, but there can be little doubt that at  
sufficiently high frequencies the problem is more properly posed as one of the 
usual diffraction type. This is what we do in considering the problem of what 
potential field is radiated by a quadrupole distribution in the vicinity of a sharp 
edged thin half plane. We solve the problem with the aid of the known exact 
Green’s function and conclude that the edge scattered field is proportional in 
intensity to the fifth power of flow velocity. As such i t  is likely to be the dominant 
sound source at  sufficiently low flow speeds. 

2. The solution of Lighthill’s equation 
The basic equation which describes aerodynamic noise generation and propa- 

gation and which is taken as the starting point of this analysis is due to Lighthill 
(1952) 

where p is the fluid density, (vl, v2, v3) the velocity vector, c the sound speed in 
the undisturbed fluid and pij the compressive stress tensor. We shall initially 
assume that viscous effects are negligible so that we set pij equal to pSij, where p 
is the isotropic pressure in the fluid. If we further suppose that changes in p are 
exactly balanced by changes in c2p then Lighthill’s equation can be written 

We seek a solution of this equation when there is a rigid, vanishingly thin, 
half-plane immersed in an otherwise unbounded fluid. 
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If we define the generalized Fourier transform of the function f ( t )  as 

j * ( w )  = Asrn f ( t )e- iwtdt ,  
27T 
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then Lighthill's equation can be written as the inhomogeneous Helmholtz 
equation 

where k = wlc. 
The presence of the rigid half plane gives the boundary condition that the 

normal velocity vanishes at  the surface. The solution of (3) with this boundary 
condition can be written down at once in terms of a Green's function, G, whose 
normal derivative vanishes on the half-plane. It is: 

I 
I 

where (V'+ k 2 )  G = - 4778(~ - y), 

aG 
with - = 0 on the half-plane. 

an 
> ( 5 )  

The volume integral in (4) is strictly over all space, but as (a2pvivi/ayi ayi)* is 
considered non-zero only within the turbulence, the volume integral need be 
evaluated only over that region. If we now complete the divergences in (4), and 
convert the volume divergence integrals into surface integrals by the use of 
Gauss's theorem we find that the surface integrals vanish because of the con- 
dition that there is no normal velocity on the half-plane and we are left with 

W Y ) .  ( 6 )  

In  cylindrical polars this is 

477p*(T,@,Z,O) = p v r ~ + p v ~ ~ + p v , . v z  a2G [ a  - (a")+"(")] - I( ' r r :  ar, az, az, ar, 

where d& = ro dr, do, dz,. 
The particular cylindrical co-ordinate system which we use is illustrated in 

figure 1. 
We restrict our attention to field points which are many wavelengths both 

from the turbulent region and from the edge of the half plane. That is, we suppose 
kr $ 1 and r % ro. 

42-2 
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Macdonald (1915) has shown that the solution of ( 5 )  takes, in the far field, 
the form: 

where 

and 

krr, + 0-0, u,= 2 ( - )  cos- 2 = 5 [k(D-R)]B 
D + R  

= [k(D - I?)]*. 
2 

FIGURE 1. The co-ordinate system. 

R is the separation of the source point (yo, 0,, zo)  and the field point ( r ,  0, x ) ,  i.e. 

R = (r2 + r i  - 2 ~ , ,  cos (0 - 0,) + ( X  - x0)2)g. 

R‘ is the separation of the specular image source point in the plane containing 
the half plane, (r,, - B,, x,), and the field point : 

R‘ = p + - 2rr, COS (0 + 0,) + (2 - zo)2p, 

D = {(r+r,)2+(X-zo)2p. 

It can be shown that D is the shortest distance between the source and field 
points travelling via the edge. 

G is similar to the Green’s function for an infinite rigid plane with the difference 
that now each term is weighted by a Fresnel integral whose magnitude can 
vary between 0 and 1 (approximately). Any enhancement of the sound field from 
that produced by turbulence in free space or near a rigid plane can only arise 
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from the derivatives of these integrals, and in particular, from the derivatives of 
u, and uE. 

The limits of integration u, and uE may be simplified by noting that any 
derivative of the factors (D + R)-t or (D + R')-t does not appear in the farfield 
representation of p" when G is substituted into (7) .  We may therefore use at  
once the farfield approximations : 

D + R E 2{r2 + ( z  - zo)2}4 

D + R' z 2{rz + (z - zo)2)*, 

u, = (21%r0 sin 4); cos 4( 8 - e0), 
uE = (2kr0 sin $14 cos g(S + O,,), 

and 

to write 

r 
where sin$ = 

2 j p  + (2 - z0)2] ' 

The independence in the farfield of uR and uRt on the co-ordinate zo excludes 
the possibility that the term 

in (7) might have a magnitude much greater than if G were just that of a rigid 
plane. Accordingly, we can conclude immediately that the edge does not result 
in any significant enhancement of the sound produced by longitudinal quadru- 
poles aligned parallel with the edge. 

Also, another deduction can be made from the general form of G, namely, 
that the sound field at points on the plane 8 = n has exactly the same features 
as sound from free turbulence. This may be seen as follows. On the plane 8 = n 
(which is the half plane complementary to the material half plane) the field 
point is equidistant from the real and image source points. That is, R = R' 
and so. 

e-ikR 
- -- 

R '  
the Green's function for an unbounded fluid. 

We are now ready to substitute the expression for G given by (8) into the 
equation for p*(r, 8, z, 0). We shall consider separately the two cases of turbu- 
lence well within a typical acoustic wavelength of the edge and many wavelengths 
away from the edge. 
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3. The noise from eddies very near the edge 
We first consider the case of eddies (that is, regions of the turbulence over which 

fluctuations of velocity are highly correlated) which are well within a wavelength 
of the edge. By this we mean that every part of the eddy satisfies the inequality 

Zkr, < 1. 

The Fresnel integral &u= du 

has the series expansion 

(see, for example, the introduction to Pearcey's (1956) tables). 
Hence we can write, 

or, noting that 

we can replace R' by R : 

kR' = kR + Zkr, sin 8, sin 19 + O(kr i /R) ,  

When this expression for G is fed into equation (7) we obtain terms containing 
(2kr0)-4, (2kro)-4 or positive powers of 2kr,. Under the condition Zkr, < 1 the 
dominant terms are those containing (2kr0)-s and it is these terms we retain 
when we write 

2eBn 

,,I.. 
- 4np*(r, 8,x; w )  = k2 ~ (sin 4)s cos $8 

e-ikR 
x {pv: cos 48, - pv! cos +8, - 2pv,vg sin +9,)* (2kr,)-% __ dVo, (10) s R 

where the volume integral is evaluated over those eddies which satisfy 2kr, < 1. 
This equation is the basic result of this section. It is exactly the same result 

as is obtained by performing the differentiations on the Green's function in the 
form (8) and then picking out the dominant terms under the condition 2kr, < 1. 
It should be compared with the corresponding equation which is applicable to an 
unbounded turbulent fluid: 

4np*(r,O,z; w )  = -k2 {pv,2~os~(8-8,)+~v~sin~(8-B,)  

+ 2pv,vo cos (8 - 8,) sin (8 - 8,) 
s 

+ similar terms involving each of the remaining 
&kR 

Reynolds' stresses}* ~ dV,. (11) R 
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The first point to notice is that the integrand of (10) contains the large factor 
(2kr0)-%. This has the consequence that the farfield acoustic pressure levels 
when there is an edge in the turbulent region may be considerably greater than 
when there isnone. 'May be', because the pressure field has a different direction- 
ality to that of the radiation field of an eddy in free turbulence. 

A further point to notice is that the different Reynolds stresses are differently 
affected by the half plane. The stresses pv,", pvg and pv,v, produce pressure fields 
which are greater by a factor of order (2krJ-4 than the free turbulence values; 
the stresses pvrv, and pvsv, (which are not shown in (10)) are increased by the 
smaller factor (2kr0)-4, while the stress pvz has just the pressure field we would 
expect if the half plane was an infinite plane (i.e. had no edge). 

Following Lighthill, we regard the turbulence as divided into regions within 
which each of the products (pv:)*, (pvi)* and (pv,v,)* is perfectly correlated, the 
size of each region being very much less than an acoustic wavelength. For the 
,sound pressure from such a region we can write 

x [ (pv: -pvi)* 1 cos i8,(2kro)-8 c i ~  - ~ ( p v ,  vs)* 1 sin +8,(2krO)-8 cib] , (12 )  

where the volume integrals are now to be evaluated over the region of perfect 
correlation. If such a region is supposed to occupy the space rl < ro < r2,  
8, < 8, < 8, and z1 < xo < z2 then a good approximation to these volume inte- 
grals is 

where the cos or sin is to be taken if the original integral contained a cos or 
a sin, V is the volume of the eddy and /3 = &(el + 8,) and Po = $(rl + r 2 ) .  F ,  and /3 
may be regarded as the ro, 0, co-ordinates of the centre of the eddy. 

The volume integrals may also be evaluated if it  is supposed that the eddy is 
a cylinder centred on the edge of the half plane. The integrals containing cos $0, 
vanish but 

21 
O -  7T 

sin &8,(2kr,)-3 dB - - (kS)-% V 

= 24 (1*31CS)-$ V ,  
S '  

where 2s is the diameter of the cylinder. This result indicates that a lower bound 
for F ,  should be 1-38, or, roughly, 6. 

If we write v, = U, + ur, vg = U, + us and v, = U, + u, where the flow near the 
,edge is regarded as being composed of a steady, time independent part (U,, U,, U,) 
and a fluctuating part (u,, u,, u,) then, for example, 

( p v p  = po(u:+2u,u,+u~)" 

= 2POu,@, 

where p has been set equal to pot the density of the undisturbed fluid. U:, because 
it is independent of time, makes no contribution and the term, u: is neglected 
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because it is smaller than the term V,u, by the factor of a, the normalized turbu- 
lence intensity. That is u, is of order c1. times a typical flow velocity ( U  say). 

Instead of (12) we may now write the approximate relation 

where B is the angle the mean flow makes with the edge of the half plane. From 
this we can obtain an approximate formula for the farfield acoustic intensity 
that neglects any effects of cross-correlation between individual terms of (12). 
It is 

(14) 

Ic4 sin 4 cos2 ($0) po U4a2 sin2 B 
I ( r ,  0’2; 0) = 

T ~ c R ~ ( ~ F , ) ~  

Setting To equal to the correlation radius we find I has a maximum value of 

The typical frequency of the turbulent source is of order U/2S  so that k is of 
order nUlc8. Thus the scattered intensity increases in proportion to the Jifth power 
of the f luid velocity, U .  This is a new result which should be compared to the 
eighth power law obtained from free turbulence, or turbulence supported by an 
infinite plane, and the sixth power law obtained from the usual estimations of 
Curle’s (1955) surface dipole term for acoustically compact surfaces. Curle’s 
solution of Lighthill’s equation in the presence of surfaces is undoubtedly 
correct. However, his result is difficult to interpret for non-compact surfaces 
because it is not possible to estimate quantitatively the ‘dipole’ term for surfaces 
which are not small compared with an acoustic wavelength. Dimensional argu- 
ments are altogether too crude: for infinite planes they overestimate the sound 
and for sharp edged semi-infinite planes they underestimate it. 

4. The noise from eddies remote from the edge 
We now consider the effect of the half plane on the noise from those eddies 

which are far enough from the edge for the inequality (k?,)h > 1 to hold. To is 
again the distance of the centre of the eddy from the edge. 

We write G in Macdonald’s form: 
e-ikR e--ikR 

G = - -  R I R + F I R , ,  

where 

and 

When G is substituted into ( 7 )  for p* and the factor lc2 abstracted from each 
term, three distinct sets of terms are obtained; those containing the factor I, or 
IR’, those containing the factor (kro)-h and, finally, those with the factor (kro)-3. 
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For example, 
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Derivatives of 1IR have been omitted because they do not appear in the farfield. 
Neither does the term containing 

1 PR 1 aR +-- r$ as$ r,aB, 
-~ 

for it is of order 1/R2, as can be verified by performing the differentiations. Now 

Also, 

Combining these results, we have 

The remaining terms on the right-hand side of (7)  can be dealt with similarly. 
Figure 2 shows a sketch of the behaviour of IB(Ifl) as a function of uR(ufl). It 

is apparent that if (kr,); is very large and uR(uR') is not large and negative then 
the terms containing IR(IR') are much larger than those containing (kr,)-4 and 
(kr,)-+. The signs of uR and uE depend upon the signs of cos+(8-8,) and 
cos i(6' + 8,) respectively. If both cos +(8 - 8,) and cos i(8 + 0,) are positive, and 
this will be the case if 8 is acute and 8, < 77 - 8, then 

where 
aR l a R  aR 

(Ri) = (- -- -) 
8R' 1 aR' aR' (R!) = (- -- -) . 
ar, ' ro a8, ' az, ' 

ar, ' Yo ae, ' aZ, 
and 
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If 8, is just a little greater than 7r - 8 so that uE, although negative, still has 
IE with magnitude much greater than (kro)-* then (19) is still the appropriate 
expression for p*. For larger values of 8,, but 8, still less than n- + 8, IE has magni- 
tude comparable to (krO)-4 and so is negligible compared to  I, which is, at  least, 
greater than fr. When 8, is in this range the expression for p* is 

FIGURE 2. Sketch of the function I,. 

Again, if 8, is a little greater than n- + O0, I, is still much greater than (kro)-3 
and (20) is still applicable. For larger 8,) however, both I, and IE are com- 
parable to (kr,)-&. The expression for p* would now have to include not only 
the terms containing In and In. but also those containing the factor (kr,)-A. We 
shall not write this expression down but merely note that the value of p* which 
it would predict is much smaller, by the factor (kro)-4, from the values given by 
(19) or (20). 

Now (see Pearcey 1956)) 

so that, except near 8, = n- - 8, we can write (19) as, 

e-ikR e - i k R  
~ 47rp*(r, 8 , z ;  W )  = - k2 (pvivj)* R,R. ~ + R; R! ( 2 2 )  

(23) 

except near O0 = 7r + 8 . 
The position for eddies far from the edge is summarized schematically in 

figure 3. Where (22) holds, the half plane behaves like an infinite rigid plane 
with the edge having a negligible effect of order (ha)-&. Where (23) holds, the 
sound is just that of an eddy in free turbulence, the edge again having a neg- 
ligible effect of order (k~,)-$. Finally, an eddy in the geometrical shadow of the 
field point produces sound pressures lower than those from free turbulence by 

s [ 3 R  R' 
and (20) as 

e-ikR 
4 7 r p * ( r , 0 , z , ~ )  = -k2 (pvivj)*RiRj- R ah, s 



Aerodynamic smnd generation 667 

the factor (kro)-4. Between each of these three regions there is a region where the 
sound pressures are intermediate between those of the neighbouring regions. 
There is no sharp discontinuity between, say, the regions from where reflected 
and direct sound is heard and that from where only direct sound is heard. 
However, the angular (0,) extent of these transition regions decreases with 

B 

- - -  
- - - - -  
- 

FIGURE 3. Sketch showing regions where the various equations are applicable for esti- 
mating the sound from eddies far from the edge of the half plane. Region: A ,  equation (22) 
holds if eddy is in this region; B, equation (19) holds; C ,  equation (20) holds; D ,  equation 
(23) holds; E ,  sources in this region produce sound pressures of p reduced by factor 
(k& on those from other regions; P, points further from the edge than this satisfy the 
inequality (kr,)* + 1. 

increasing distance of the eddy from the edge. The narrower this transition region, 
the sharper does the contrast between the sound heard from one region become 
with that from another. 

If an eddy is supported by the half plane and is on the same side of it as the 
field point, then there is at  most a fourfold increase in the sound intensity at  the 
field point: if the eddy is on the opposite side of the half plane, then the intensity 
is reduced by the large factor (h~,)-& and may be taken as zero. Lastly, if the 
eddy is far from both the edge and the half plane (but not in the shadow region) 
then the intensity is the same as if the turbulence was unbounded. This is true 
even when there is reflected sound for then the travel time of the reflected sound 
is many eddy lifetimes longer than the travel time of the direct sound. 

The essential point is that, except when the eddy lies in the geometrical shadow 
of the field point, a turbulent eddy far from the edge produces a sound of intensity 
comparable to that of an eddy in free turbulence. 

5. The effect of motion of the half plane 
Until now the half plane has been supposed perfectly rigid. However, it is 

possible to discuss the case of a half plane which is sufficiently limp that it 
cannot support any normal stress, that is, a pressure release boundary. 
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The Fourier transformed version of Lighthill's equation, our equation (3), 

A formal solution of (3) is now 
now has to be solved subject to the condition that p* = 0 on the half plane. 

where (V2 + k2)  G = - 4 n 8 ( ~  - y), and 0 = 0 on the half plane. Macdonald (1915) 
has shown that 

where the symbols have their previous significance. The only difference between 
G and is the change of sign of the 'image' part of G .  

If the divergences are completed in (24) then 

d V -  pvi-dS. s 
The surfa,ce integral is to be evaluated over the mean position of the half plane. 
We may omit it from further discussion by observing that because only one 
differentiation of d is involved the integral will contain the factor (2kr,)-t which 
means that when Zkr, < 1 it is negligible compared to the terms containing 
(2kr0)-8 arising from the double differentiations of the volume integrals. On the 
other hand, when (Icr,)B 9 1 the surface integral is negligible compared to the 
terms retained in the volume integral. The subsequent analysis is almost identical 
t o  that given for a rigid half plane. 

For turbulence very near the edge we find 

This should be compared with (10). The only significant difference is the replace- 
ment of the directional factor cos &0 in (10) by sin $0. 

Again, when the turbulence is far from the edge, the only difference from the 
rigid case is that any reflected sound has a change of phase of T. 

With both the rigid and the pressure release half planes having essentially the 
same effect on the turbulence produced noise, it seems reasonable to conjecture 
that homogeneous half planes of intermediate properties also do so. 

6. General implications of the theory 
We have seen that eddies close to the edge of a half plane are much more 

powerful sources of sound than eddies far from the edge. The intensity at  a 
farfield point of the sound from a single eddy near the edge is given approxi- 
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mately by the formula (14) which, if the directional factors are suppressed, can 
be written 

k4p0 U4a2 sin2 8 V2 N pu3 (;)2 !! 
R2 * 

I =  
n3~R2(kF0)3 

The corresponding formula for an eddy far from the edge (not in the shadow 
region) is equivalent to that of an eddy in free space 

I=-- k4p0 U4a2 V 2  N p7J3 (35!? 
32rr2cR2 R2 . 

We are now in a position to estimate the scales of a surface in the critical case 
when the surface sound has an intensity comparable to that arising from the 
eddies near the edge. Larger surfaces than this critical size will be essentially 
unaffected by the edges while smaller surfaces will be dominated by the edge 
noise. 

Comparing (26) and (27) we see that an eddy near the edge radiates an acoustic 
intensity equivalent to that of ( 3 2 / m )  x eddies in free space or a quarter 
this number of eddies in the boundary layer far from the edge. A minimum 
estimate of Fo is the correlation radius 6 of the eddy, corresponding to an eddy 
centred on the edge. An eddy further from the edge will give rise to an intensity 
appreciably lower than this closest eddy because of the dependence of the 
intensity on the third power of the distance from the edge. For instance, a 
doubling of the effective distance of an eddy from the edge results in a 9db 
lowering of the intensity. Taking, however, 6 as our estimate for To the edge 
region is equivalent, in sound generating ability, to the area within 

(16/7~) ( ~ c Y ) - ~  x 26 

of the edge. Since k6 is of order n-M the surfaces must have dimension normal to 
the edge in excess of (1 6/n4) M-36, or, equivalently, ( 8/m5) M-2 acoustic wave- 
lengths if the edge effect is to be other than dominant. This is necessarily a 
minimum estimate, for no account has been taken of the eddies farther from the 
edge than the closest eddy but still well within a wavelength of the edge, but it 
does show that if the fluid is water where M is seldom above 10-2 then to all 
intents and purposes the flow noise must come from the edge. Real underwater 
surfaces are unlikely to be large enough for surface noise to be important. 

A further consideration of some practical importance can be deduced from (26). 
The factor sin2$ reduces the scattered noise from flows which pass obliquely 
over the edge. It is difficult to justify the transfer of results obtained for such 
an ideal surface as an infinitely thin, rigid half plane to surfaces which are 
encountered in the real world, but this does suggest that the noise from a sharp- 
edged surface can be considerably reduced by giving it a swept wing character- 
istic. Marine propellers with greater curvature in the span-wise direction might 
be expected to generate less noise than those which have the span-wise direction 
more or less radial. 

Part of this work was conducted in connexion with the Naval Ship System 
Command General Hydromechanics Research Programme administered by the 
Naval Ship Research and Development Centre, Contract N. 62558-4996. 
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